

FACULTEIT BIO-INGENIEURSWETENSCHAPPEN

DEVELOPMENT OF AN ANALYTICAL METHOD FOR MULTI-PESTICIDE RESIDUE DETERMINATION IN LNS AND COMPARATIVE EFFECTS OF WASHING AND DRYING PROCEDURES ON 3 LONG-LASTING INSECTICIDAL MOSQUITO NETS

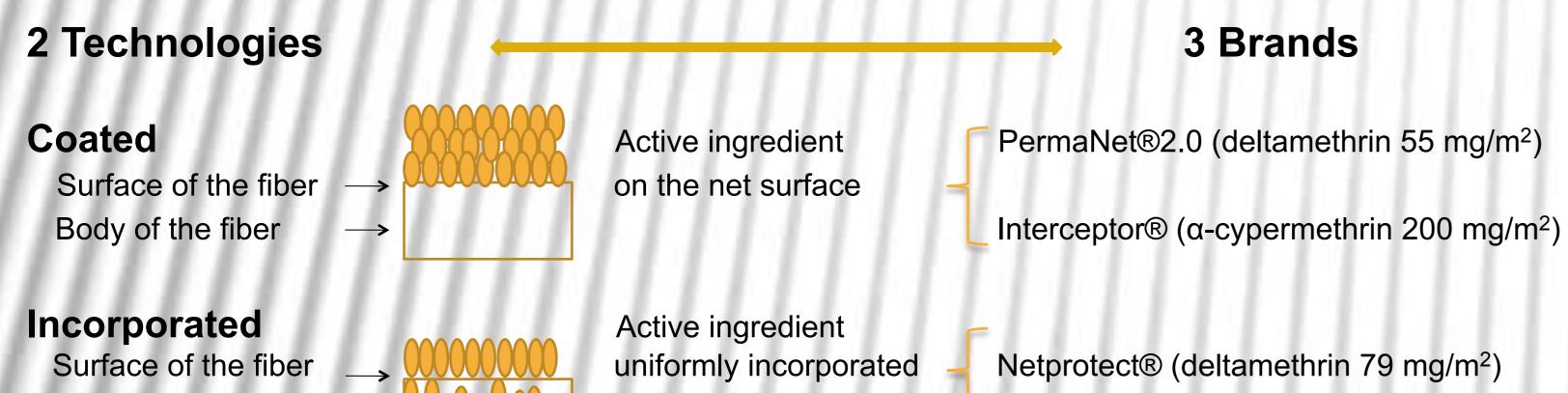
Jean Pierre Nabléni Ouattara^{1,4}, Johanna Louwagie², Olivier Pigeon³, Pieter Spanoghe¹

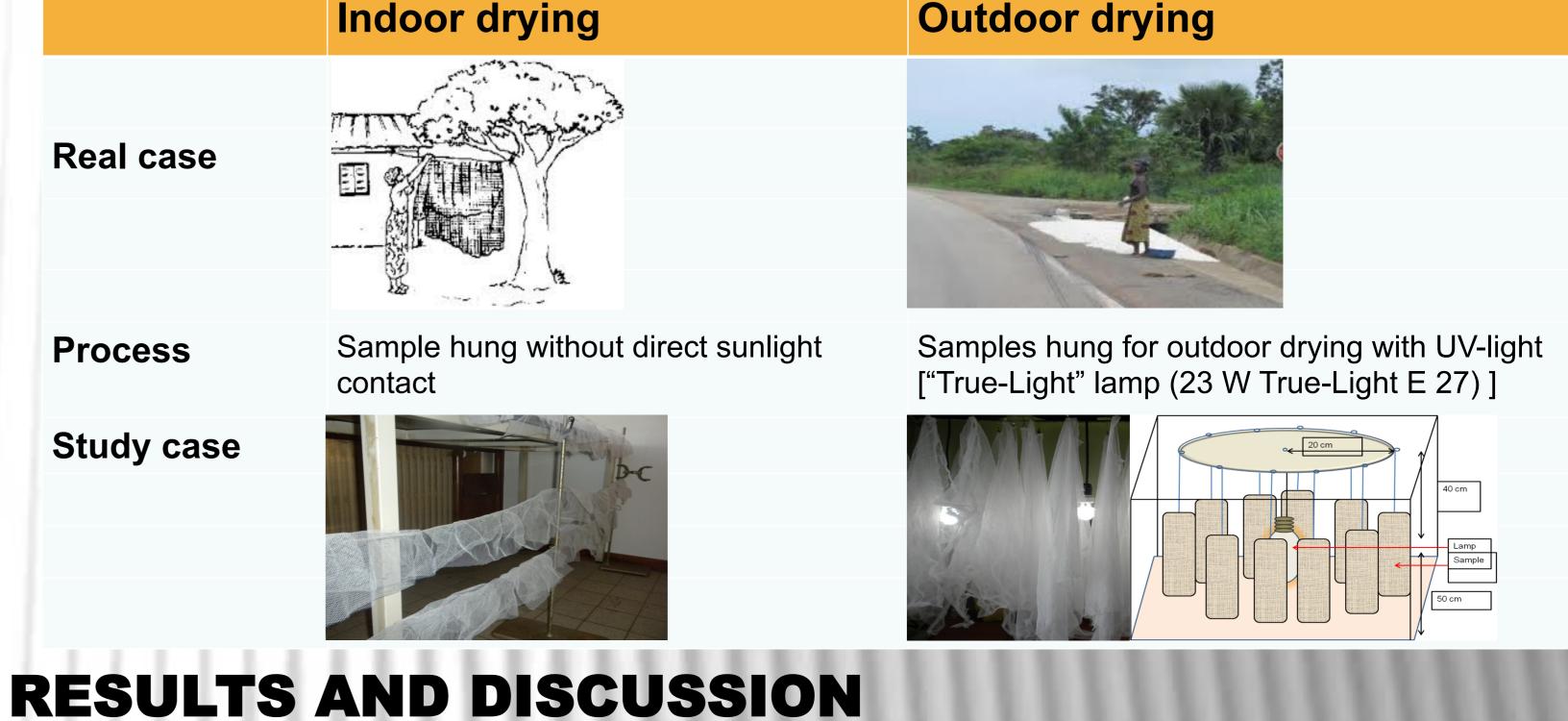
¹Laboratory of Crop Protection Chemistry, Department of Crop Protection, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

² Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde, Belgium

³ Walloon Agricultural Research Center (CRA-W), Agriculture and Natural Environment Department, Plant Protection Products and Biocides Physico-Chemistry and Residues Unit, Rue du Bordia, 11 B-5030 Gembloux, Belgium

⁴ Laboratoire National de Santé Publique (LNSP), Boulevard des Tansoba Kiéma, 09 BP 24 Ouagadougou 09, Burkina Faso (nableni@yahoo.fr)


INTRODUCTION

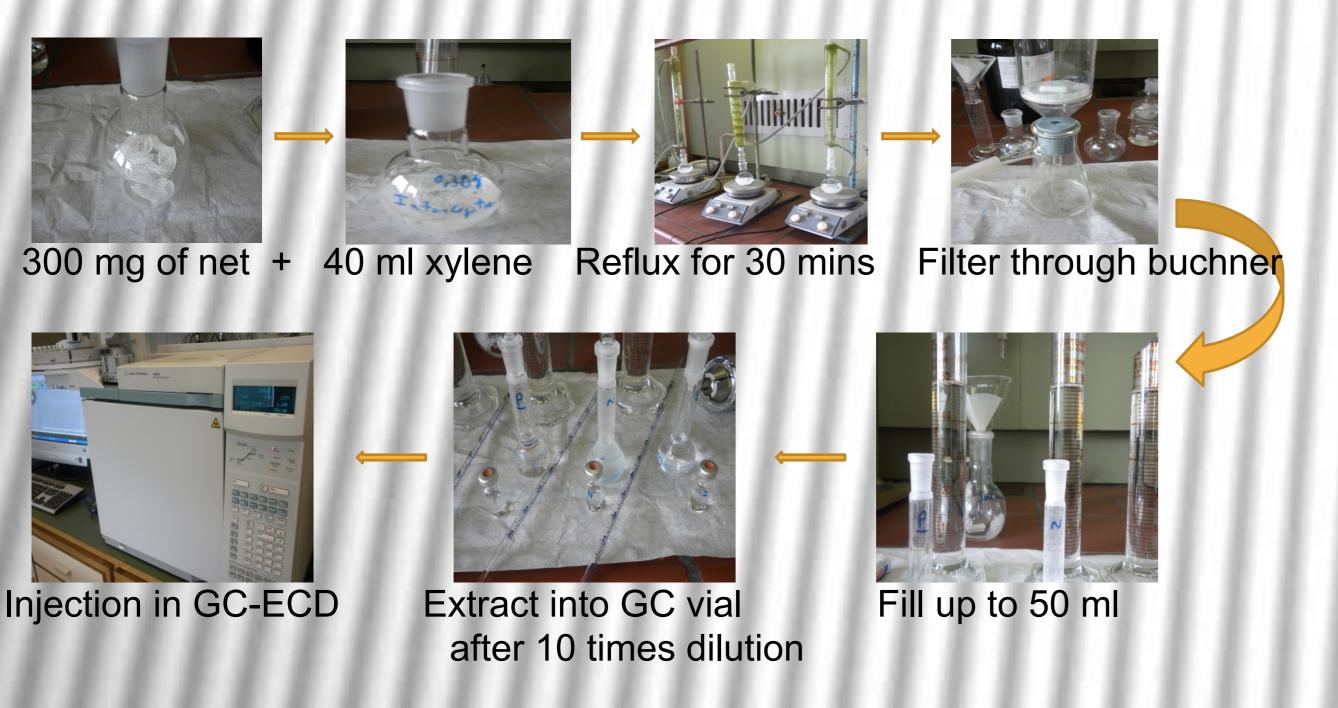

Long-lasting insecticidal mosquito nets (LNs) are frequently used around the world to protect people against malaria vectors. As they contain insecticide, laboratory control is needed to check whether the content of the active ingredient is according to the manufacturers or WHO specifications and also whether the LN is still efficient after some time of use. Due to the fact that LNs include a range of polymers for the yarn and use coated or incorporated technologies for the active ingredient, it is a challenge to find a single analytical method to determine the active ingredient in LNs, which takes into account both impregnation technologies. Since LNs efficacy depends a lot on their use in field conditions, questions rise like what happens with the active ingredient when nets are washed and dried in different ways. To answer these questions, experiments were carried out to propose a multi-pesticide residue determination in LNs and to investigate the difference between laboratory hand washing simulation using the CIPAC washing agent and domestic washing on different bed nets, as well as the effect of the drying process on the release of active ingredient.

DRYING PROCEDURES

MATERIALS AND METHODS

□ NETS AND INSECTICIDES

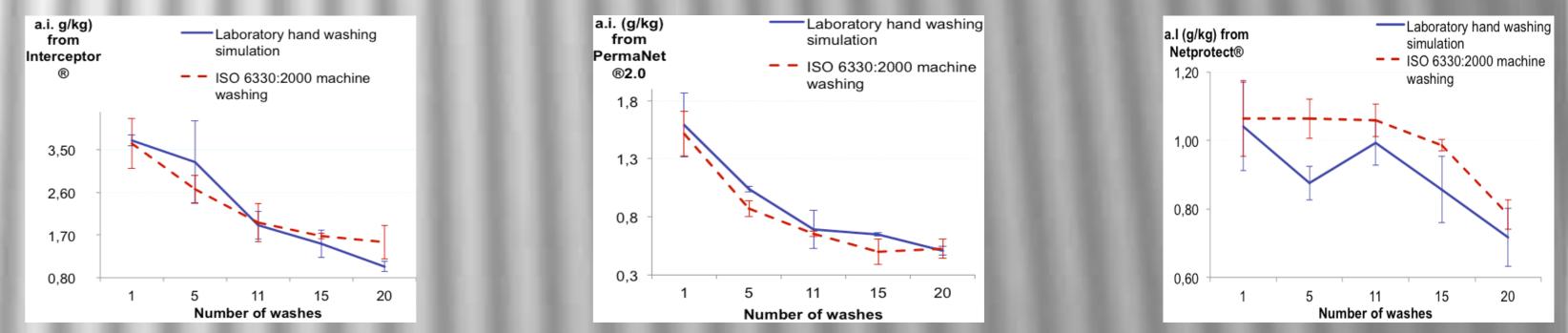
ANALYTICAL PERFORMANCE


Selectivity/Specificity

Repeatability / Recovery / Accuracy / LOQ

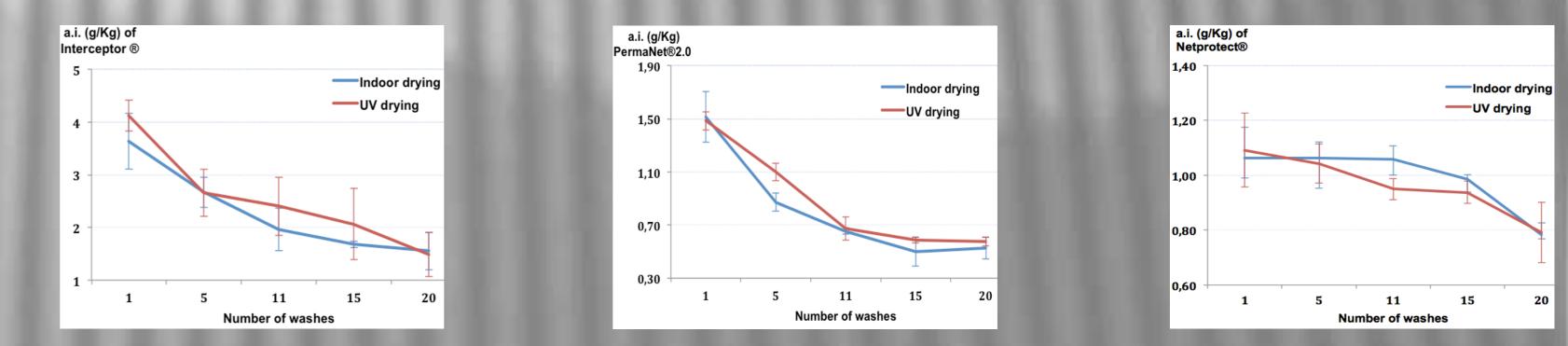
Hz _ 600 -	ypermethrin	Ę		Spiking levels (g/ kg)	Ν	Mean R (%)	Mean RSD (%)	LOQ g/kg
550 - 500 -		- Deltamet	Deltamethrin	0.2 - 2 - 4	7-7-6	90 - 108	1 - 3	0.029
400 -	14.26	w	Alpha- cypermethrin	0.5 - 5 - 10	7-7-6	86 - 107	2 - 3	0.031
350 -	25 5 7.5 10 125		PermaNet®2.0			94		
300 -			Netprotect®			80		
25		15 17.5 20 min	Interceptor®			99		

PRINCIPLE OF THE PROPOSED ANALYTICAL METHOD


□ WASHING PROCEDURES

	Laboratory hand washing simulation	ISO 6330:2000 (Domestic washing procedure)				
Soap	CIPAC washing agent	IEC A* Reference detergent				
Washing solution	8g/l of soap in deionized water (30°C)	According to the washing program				

□ WASH CYCLES AND CURVE FITTING


Туре	Cycles Equation ^b			F-test of the model						Model parameters		
of nets			R	R- Square	F	df1	df2	Sig.	Constant (b0)	b1	b2	
	ISO 6330:2000 wash - Indoor drying	Linear	0.832	0.692	69.794	1	31	0.000	3.511	- 0.112		
		Logarithmic	0.828	0.685	67.421	1	31	0.000	3.96	- 0.790		
		Quadratic	0.848	0.720	38.509	2	30	0.000	3.836	- 0.203	0.004	
		Exponential	0.864	0.746ª	91.073	1	30	0.000	3.656	- 0.049		
0	ISO 6330:2000 wash - UV drying	Linear	0.760	0.577	42.279	1	31	0.000	3.635	- 0.112		
Interceptor®		Logarithmic	0.808	0.653°	58.455	1	31	0.000	4.197	- <mark>0.84</mark> 1		
terce		Quadratic	0.793	0.629	25.409	2	30	0.000	4.123	- 0.248	0.00	
<u> </u>		Exponential	0.772	0.596	45.822	1	31	0.000	3.719	- 0.046		
	Laboratory standard wash – Indoor	Linear	0.914	0.835	157.326	1	31	0.000	3.858	- 0.151		
	drying	Logarithmic	0.854	0.729	83.484	1	31	0.000	4.325	-1.000		
		Quadratic	0.918	0.843	80.322	2	30	0.000	4.063	- 0.209	0.00	
		Exponential	0.939	0.881ª	229.786	1	31	0.000	4.321	- 0.072		

□ LABORATORY HAND SIMULATION VERSUS ISO 6330:2000

□ INDOOR DRYING VERSUS OUTDOOR DRYING

CONCLUSION

A suitable multi-pesticide residue method was validated for measuring pesticides residues in incorporated and coated long-lasting nets. The total active ingredient in LNs decreases with the number of washes. The wash resistance of incorporated nets is higher compared to coated nets. A strong relationship between the release of the active ingredient from the LNs and the number of washing cycles was found not only for exponential model as can be found in the literature, but for the logarithmic model as well. LNs are proven to be well protected against UV by the way they are produced.