Current and future trends in Pesticide Residue analysis

Jim Garvey

A brief history of Pesticide residue analysis

1. Where we have come from

2. Where we are now

3. Where we are going

Where we have come from

Where we have come from

 Three analyses required for positive results – screen, confirm and quantify

12 different standard mixes to be made up and checked

Very limited structural data

High risk of false positives and false negatives

- Scope too limited to cover the pesticides being used and found in other countries
- EU pressure
- Residue definitions often include a significant number of metabolites
- Development of instruments with Mass Spectrometry detectors at affordable prices

Scope expansion

GC Scope expansion

- SIM methods using single quadrupole MS detectors
- Target ion
- Three qualifiers
- Using retention time locking for consistent retention times
- 200 pesticides in one run

Method

Group Hexachlorobe Resolution:	
• High	Group Start Ti # of 🔺
Start Time: 11.92 Cycles/Sec = 3.70	Mevinphos 7.00 7
	Methacrifos 8.00 4
Edit Ion	Heptenophos 9.00 11
	Monocrotophos 11.30 4
Add/Modify Ion	beta-HCH 12.90 5
m/z Dwell (msec)	
87.00 20 Plot this Ion	Add New Group Delete Group(s)
m/z Dwell Plot	
87.00 20	Directions
93.00 20	
143.00 20	To edit a Group, just select it from
	Group, press "Add New Group",
	then start editting the fields on the
Delete Ion(s)	left. To delete a Group(s), pick a single or multiple selection from the
	list above , then press "Delete
	Group(s)".
	Hala

Recovery work

		Mean	S	% RSD
1	Isoproturon	75.0	20.7	27.6
2	Nicotine	65.7	27.7	42.1
3	Propham	102.9	9.2	9.0
4	MCPA Methyl ester	103.4	10.7	10.3
5	Ethoprophos	99.4	6.3	6.4
6	Cyanophos	98.8	7.8	7.9
7	Isazofos	99.2	6.1	6.1
8	Endosulfan ether	94.8	8.2	8.6
9	Cyanazine	84.9	16.8	19.8
10	Chlorthal dimethyl	96.6	6.5	6.7
11	Tetraconazole	109.7	12.2	11.1
12	Sulfur	88.8	63.1	71.1
13	Isodrin	88.5	7.9	9.0
14	Endosulfan lactone	91.9	7.1	7.7

		Mean	S	% RSD
15	Metazachlor	91.9	9.9	10.8
16	Paclobutrazol	108.0	8.8	8.2
17	Napropamide	100.3	6.1	6.1
18	Picoxystrobin	99.0	9.1	9.2
19	Profenophos	104.4	9.3	8.9
20	Buprofezin	95.2	3.2	3.4
21	Flamprop isopropyl	99.1	6.5	6.5
22	Cyanofenphos	101.3	6.0	6.0
23	Lenacil	100.4	14.6	14.6
24	Trifloxystrobin	104.6	17.1	16.3
25	Epoxyconazole	105.0	17.2	16.4
26	Bifenox	111.2	26.8	24.1
27	Pyridaben	101.8	8.0	7.9
28	Fenbuconazole	97.4	15.0	15.4

Pro's and cons

- Quantitation possible for overlapping peaks.
- Getting structural information
- Very good sensitivity down to 10ppb
- Dependent on molecules fragmenting to give unique ions
- Prone to matrix effects.

Increasing selectivity and sensitivity

- GC-MS/MS
- All the advantage of SIM methods including retention time locking.
- Greater selectivity One transition for quantitation and one for confirmation

 Increased sensitivity – can now see 1ppb easily in food samples

Data

📆 Agi	lent	MassHunter	Quantitative Ana	ysis - Cere	als7351	12-73519+eupt - 7351	2_73519+e	upt										_ 8	×
; File	File Edit View Analyze Method Update Report Tools Help																		
: 🗅	2		Analyze Batch	🕜 🦾 Layo	ut: 🔣		Restore Defa	ault Layou	t										
Batch 1	[able	•																	\times
. Sar	mple:	👔 👢 🔤	Sample Type: <all></all>	-	Compou	nd: 🔄 Fenitrothion		-	ISTD	: TPP					-	1 🥐 🦿	7	\bigtriangledown	
			Sar	mple			Fenitrothi			Fen	itrothion Re	sults		Qualifie	er	TPP (IS	TD) R	Qualifi	ie 🔺
•	9	🕅 Name	Data File	Туре	Level	Acq. Date-Time	Exp. Conc.	BT	Resp.	MI C	Calc. Conc.	Final Conc.	Accuracy	Ratio	МΙ	BT	Resp.	Ratio	
- 0		MixB20a	MixB20b.D	Cal	2	2/23/2010 7:23 PM	20.2400	18.062	4239		19.8476	19.8476	98.1	45.4		27.740	19771	44.1	1
-		MixB10a	MixB10a.D	Cal	1	2/23/2010 8:13 PM	10.1200	18.058	2409		10.7697	10.7697	106.4	47.5		27.744	20535	41.7	
-		Parley	73512.D	Sample		2/23/2010 9:03 PM		18.049	3		0.0000	0.0000		200.0		27.736	19191	43.1	
- 0		Barley	73513.D	Sample		2/23/2010 9:53 PM		17,808	6		0.0000	0.0000		50.0		27.736	19649	44.2	
		Barley	73514.D	Sample		2/23/2010 10:43 PM		17.873	8		0.0000	0.0000		37.5		27.731	14745	44.6	.
		Barley	73515.D	Sample		2/23/2010 11:33 PM		18.086	4		0.0000	0.0000		25.0		27.731	17691	42.8	4
		Barley	73516.D	Sample		2/24/2010 12:24 AM		18.045	1	느	0.0000	0.0000		300.0	ᆜ	27.731	17721	43.4	
		Barley	73517.D	Sample		2/24/2010 1:14 AM		18.090	17	느	0.0000	0.0000		52.9	ᆣ	27.736	17400	43.6	
		Barley	73518.D	Sample		2/24/2010 2:04 AM		18,148	2		0.0000	0.0000		50.0	井	27.731	16957	42.7	-
		Barley	73519.U	Sample		2/24/2010 2:54 AM		18.365	3		150 7450	150.7450		133.3	井	27.731	14875	43.9	-
	-	Rye	EuptC4a.D	Sample		2/24/2010 3:44 AM		10.000	27826		153.7452	153,7452		40.1		27.731	15050	43.9	
H		Pue	EuptC40.0	Sample	4	2/24/2010 4.34 AM	101 2000	10.002	23432		99 5220	99 5220	97.4	44.0	Ηt	27.730	10402	45.5	<u>.</u>
	+				4	2/24/2010 3.31 AM	050,0000	10.070	22404		251,2230	251,0010	37.4	43.0	<u>i i i i i i i i i i i i i i i i i i i </u>	27.740	13403	40.4	÷I
Compo	bund	Information					× C	alibration	Durve										\times
:	↔	‡ <u>R</u> 🛣			ш Ę	₹ .	1	₽ ↔	‡	: 🖛	🔿 🗆 ту	ype: Q 🔻	Origin: I.	. 👻 V	Veigh	t: 1/×	- IST		;;; ;=
+ MBM	(277	7.1 -> 109.0) Eu	ptC4b.D Smooth	277.1 -	> 109.0	, 277.1 → 124.9	F	enitrothior	n - 5 Lev	els, 5 l	Levels Used	d, 10 Points, 1	IO Points U:	sed, 1 Q(Cs				_
ੂ ਵ੍ਰ x10	3	18.06	2 min.	월 x10	3 Rati	o = 44.6 (101.1 %)		ຍ ຊີ 2 ⊑	y=0.140 ⊳≏≎_0	3680 ° 99970	x ^2 + 1.02 175	26480 * x + O	.005132						
8		1		3	8-	0		<u> </u>	11 2 - 0.	55570	113								
	$^{\prime \pm}$				7			2 3-		_						_			
	6				6-] }	<u>(</u>	2											
	5				-			8 2.54											
	1				9-			ē 2-							-				
	4	j			4	T_		-											
	з-				3			1.5-								_			
		J	l																
	21				2	1/ 10		'1											
	1+				1	<u>// \</u>		0.5+		_	-								
		/			n .					•									
	-				Ŭ			04	-										
	_	17.8 18	18.2 18.4		17.	8 18 18.2 1	8.4	-	Ó	0.2	0.4 0.6	0.8 1	1.2 1.4	1.6	1.8	2 ;	2.2 2.4	1 2.6	
			Acquisition Time (min)		Acquisition	Time (min)									Rel	ative Cor	ncentral	tion
												By	e	Fenitro	othion	21	Samples	: (21 tot	al)
										_					_			_	

Data

Compounds at a Glance

Pesticide Control Laboratory, Backweston Laboratory Complex, Young's Cross, Backweston, Celbridge, Co. Kildare, Ireland

_ 8 ×

Recovery work

	Mean	S	% RSD
Aldrin	93.8	10.6	11.2
Azinphos ethyl	95.3	10.9	11.4
Azinphos methyl	95.3	12.0	12.6
Bromophos ethyl	96.1	12.1	12.5
Bromophos methyl	96.4	12.7	13.2
Chlorbenzilate	97.1	12.4	12.7
Chlordane cis	96.4	12.3	12.8
Chlordane trans	100.3	13.0	12.9
Chlorfenvinphos	98.0	12.2	12.4
Chlorpyrifos	98.8	10.6	10.7
Chlorpyrifos methyl	96.8	11.1	11.4
Coumaphos	97.0	12.0	12.4
Cyfluthrinl	92.0	9.4	10.2

Recovery work

Cypermethrin	96.2	11.0	11.5
Deltamethrin	93.9	19.0	20.3
Diazinon	96.1	12.6	13.1
Dichlorvos	91.0	14.1	15.5
Dieldrin	94.7	15.9	16.8
Dimethoate	104.9	15.2	14.5
Endosulfan alpha	93.5	20.5	21.9
Endosulfan beta	96.8	12.5	12.9
Endrin	97.7	11.4	11.7
Ethion	95.9	11.5	12.0
Fenchlorphos	96.8	12.0	12.4
Fonofos	97.6	12.5	12.8
НСВ	88.1	13.4	15.2
Heptachlor	95.5	12.3	12.9
Heptachlor epoxide exo	95.7	12.8	13.4

LC Scope expansion

- MS/MS methods using triple quadrupole MS detectors
- Quantitation transition
- Confirmation transition
- 155 pesticides in one run

Linearity

Recovery work

Compound	Mean	S	%RSD
Acetamiprid	98.9	10.5	10.6
Aldicarb	113.7	52.3	46.0
Amidosulfuron	114.9	26.0	22.6
Azoxystrobin	99.8	14.4	14.4
Carbaryl	104.9	12.6	12.0
Carbendazim	100.1	10.3	10.2
Carbofuran	103.3	13.2	12.8
Clofentezine	103.6	16.3	15.7
Ethofumesate	104.7	17.9	17.1
Fenhexamid	102.1	11.6	11.4
Fenpropimorph	104.1	11.8	11.4
Fenpyroximate	101.2	16.6	16.4
Flazasulfuron	143.4	47.3	32.9
Hexythiazox	100.1	14.9	14.9
Imazalil	96.3	15.6	16.2

Recovery work

Imidacloprid	103.8	12.8	12.3
Isofenphos	105.7	24.4	23.1
Mepanipyrim	100.3	10.7	10.7
Methamidophos	57.8	12.0	20.8
Methidathion	108.8	26.7	24.6
Methiocarb	103.7	13.6	13.2
Methomyl	99.5	11.7	11.8
Oxamyl	95.6	13.6	14.2
Pymetrozine	73.9	12.6	17.1
Pyridaphenthion	101.6	10.2	10.1
Quinoxyfen	101.3	13.0	12.8
Rotenone	103.7	12.2	11.7
Spinosad	97.7	14.7	15.0
Thiabendazole	100.3	10.3	10.2
Thiacloprid	101.1	13.0	12.8

Improvement

	1999	2010
No of Pesticides	55	350
Analyses / result	3	1
Structural Data	No	Yes
No of standards	13	4

Extraction and clean-up

Method	Extraction	Clean-up		
Fruit and veg	(1) Mini-Luke	GPC		
	(2) CAN/Buffer	DSPE		
Cereals	Ethyl Acetate	GPC		
Fats	ACN/Acetone	GPC		
Milk	ACN/Buffer	DSPE		
Eggs	ACN/Buffer	DSPE		
Honey	Mini-Luke	GPC		

Older methods

Used GPC for clean-up

Long and tedious

 1.5 days before the samples is ready for analysis

QuEChERS

- Developed by Lehotay et al in 2005
- Two steps
- Extraction with Acetonitrile and buffer
- DSPE clean-up

QuEChERS

- Reduces extraction and clean-up time down to a few minutes
- Applicable to a wide range of pesticides
- ACN as a solvent is not ideal for GC work
- Samples can be quite dirty
- Many variations now exist

Where are we now ?

- MRM's which allow each sample to be analysed for on average 350 – 400 pesticides
- Faster extraction and clean-up
- Recovery for every pesticide in each batch
- Less standard mixes, though more complicated mixes
- Fast GC and LC analysis

Where to now ?

High mass accuracy MS – TOF

Excellent screening tool

Poor for quantitation

What if ?

- We had an instrument which:
- Had a mass accuracy of 1ppm or better
- The quantitation power of a triple quad
- The sensitivity of a triple quad
- Wouldn't that be good ?

TripleTOF

Potential

- One instrument capable of:
- Pure screening for unknowns

- And / or

- Targetted analysis
- With
- Quantitation and high sensitivity

A GC equivalent

Well on the road to development

Possibly on the market next year

 Initial results are said to be very good

Is there a downside ?

- Instrumentation is now so sensitive that environmental background levels of pesticides are frequently seen in laboratories.
- Methods need to be validated at much lower concentrations which increases the difficulty of the validation

Thank you

