Appendix V

The Outlier Tests according to Grubbs (F.E.Grubbs and G.Beck, Technometrics, 14, (1972), 847.)

1. <u>Calculation of the Test Value</u> r"_{lower} and r"_{upper}

Arrange the individual laboratory averages • i in ascending order:

- (1) = smallest laboratory value
- (n) = largest laboratory value.

Calculate the total mean, • and standard variation, s.

Calculate the difference between:

the total mean and the smallest laboratory average value

$$= \bullet - \bullet_{(1)}$$
 and

the total mean and the largest laboratory average value

$$= \bullet_{(n)} - \bullet$$

Compare the two differences, and with the largest difference calculate:

$$r''_{lower} = \underbrace{--\bullet_{(1)}}_{S}$$

$$r''_{upper} = \underbrace{\bullet_{(n)} - \bullet}_{S}$$

These test values r''_{lower} and r''_{upper} are compared with the corresponding tabulated critical values $r_{\cdot,n}$ (see Tables)

2. Evaluation

If

$$r''_{lower} > r_{\bullet}, n$$

or

$$r''_{upper} > r_{\bullet}, n$$

then the extreme value checked, $\bullet_{(1)}$ or $\bullet_{(n)}$ is an outlier at the probability value of \bullet . It is recommended that a probability value of \bullet =0.01 should be taken for the testing of the total values.

Table $\mbox{Critical values} \ \ r_{\,\alpha\,;\,n} \ \ \mbox{for the Grubbs outlier test}$ $\mbox{Two-sided test}$

n a	0.10	0.05	0.02	0.01
3	1.153	1.155	1.155	1.555
4	1.463	1.481	1.492	1.496
5	1.672	1.715	1.749	1.764
6	1.822	1.887	1.944	1.973
7	1.938	2.020	2.097	2.139
8	2.032	2.12'6	2.221	2.274
9	2.110	2.215	2.323	2.387
10	2.176	2.290	2.410	2.482
11	2.234	2.355	2.485	2.564
12	2.285	2.412	2.550	2.636
13	2.331	2.462	2.607	2.699
14	2.371	2.507	2.659	2.755
15	2.409	2.549	2.705	2.806
16	2.443	2.585	2.747	2.852
17	2.475	2.620	2.785	2.894
18	2.504	2.651	2.821	2.932
19	2.532	2.681	2.854	2.968
20	2.557	2.709	2.884	3.001
21	2.580	2.733	2.912	3.031
22	2.603	2.758	2.939-	3.060
23	2.624	2.781	2.963	3.087
24	2.644	2.802	2.987	3.112
25	2.663	2.822	3.009	3.135
26	2.681	2.841	3.029	3.157
27	2.698	2.859	3.049	3.178
28	2.714	2.876	3.068	3.199
29	2.730	2.893	3.085	3.218
30	2.745	2.908	3.103	3.236
n α/2	0.05	0.025	0.01	0.005

One-sided test

Modified table according to F.E. Grubbs and G. Beck Technometrics Vol. 14 (1972) pp. 847 et seq.

Table continued $\label{eq:continued}$ Critical values r $_{\alpha\,;\,n}$ for the GRUBBS outlier test

α	0.10			
	0.10			
		0.05	0.02	0.01
31	2.759	2.924	3.119	3.253
32	2.773	2.938	3.135	3.270
33	2.786	2.952	3.150	3.280
34	2.799	2.965	3.164	3.301
35	2.811	2.979	3.178	3.310
36	2.823	2.991	3.191	3.330
37	2.835	3.003	3.204	3.343
38	2.846	3.014	3.216	3.350
39	2.857	3.025	3.228	3.369
40	2.866	3.036	3.240	3.381
42	2.887	3.057	3.261	3.404
44	2.905	3.075	3.282	3.425
46	2.923	3.094	3.302	3.445
48	2.940	3.111	3.319	3.464
50	2.956	3.128	3.336	3.483
52	2.971	3.143	3.353	3.500
54	2.986	3.158	3.368	3.510
56	3.000	3.172	3.383	3.531
58	3.013	3.186	3.397	3.546
60	3.025	3.199	3.411	3.560
65	3.055	3.230	3.442	3.592
70	3.082	3.257	3.471	3.622
75	3.107	3.282	3.396	3.648
80	3.130	3.305	3.521	3.673
85	3.151	3.327	3.543	3.695
90	3.171	3.347	3.563	3.710
95	3.189	3.365	3.582	3.730
100	3.207	3.383	3.600	3.754
n α/2	0.05	0.025	0.01	0.005

Modified table according to F.E. Grubbs and G. Beck Technometrics Vol. 14 (1972) pp. 847 et seq.