

HPLC Procedure for Assay Determination of Napropami and its R-& S-enantiomer

Napropamide is a selective systemic amide herbicide used to control a number of annual grasses and broad-leaved weeds.

Napropamide

Step 1:

External standard calibration technique is employed for quantitative determination of total enantiomers.

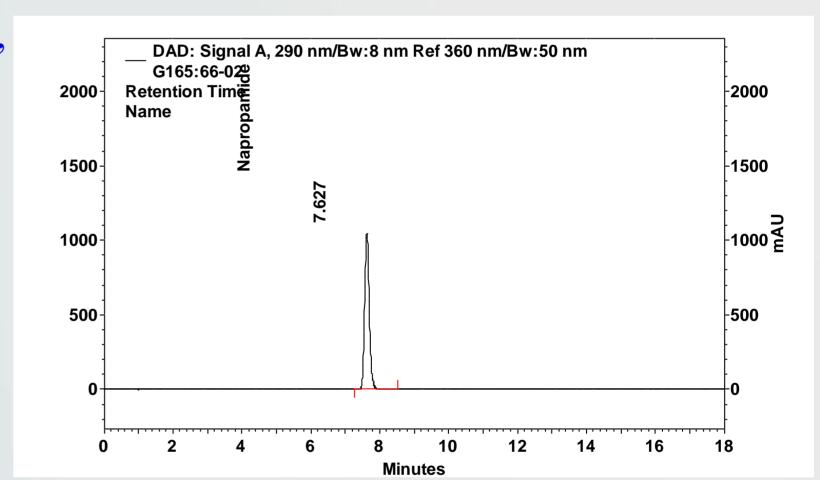
HPLC Condition:

Column, Zorbax® SB-PHENYL, 3.5µm, 4.6 mm i.d. x 150 mm, Column Heater, set at 30° C,

Detector, Wavelength set at 290 nm, BW 8nm,

Mobile Phase, Acetonitrile / Water Analytical Mode, Gradient Program

Time(min)	% Acetonitrile	% Water
0	42	58
10	42	58
10.5	100	0
13.5	100	0
4.4	40	F 0


Flow Rate,

18

42 **1.5 ml/min**

Injection Size,

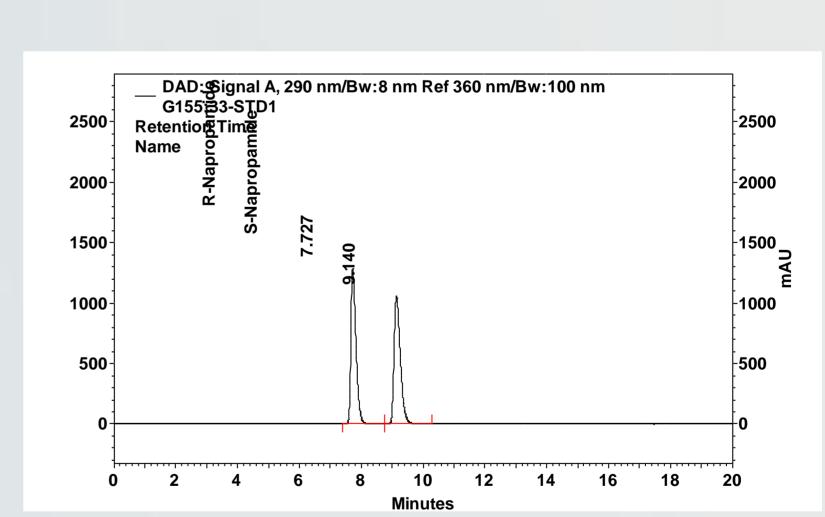
5 µl

The R- & S-enantiomers are determined with chiral stationary phase isocratic HPLC mode with a Chirlpak® AY-H column.

58

HPLC Condition:

Column, Chiralpak® AY-H, 3.5µm, 4.6 mm i.d. x 250 mm,


Column Heater, set at 30 ° C,

Detector, Wavelength set at 290 nm, BW 8nm,

Mobile Phase, Hexane/IPA/DEA = 90/10/0.1 (v/v/v)

Analytical Mode, Isocratic **1.0** ml/min Flow Rate,

Injection Size, **5** μl

The wt% of R- and S- Napropamide in the sample is determined as follows:

R-Napropamide wt% =
$$\frac{T \times A_R}{(A_R + A_S)}$$
S-Napropamide wt% =
$$\frac{T \times A_S}{(A_R + A_S)}$$

Where,

T = Weight percent of total enantiomers in Napropamide technical

 A_R = Peak area for R-enantiomer of Napropamide

 A_S = Peak area for S-enantiomer of Napropamide

